Smart and integrated water systems


Addressing water wastage through efficient water management


A comprehensive drinking water supply is a vital service in every city and region. In addition to achieving constant high water quality, maintaining water consumption at sustainable levels, reducing the energy demand of the water system and limiting water loss are all important elements of an efficient water management system. In addition to decentralized water supply systems, sensors and intelligent pumping systems can also be utilized to significantly improve efficiency. In regions with low water access, early warning systems can communicate potential supply bottlenecks at an early stage, thereby initiating measures to reduce consumption to save water for vital applications.

Target groups include utilities, city administrators and planners, municipalities, sensor suppliers, pump manufacturers, ecologists

Clean drinking water is a human right


Clean water is a vital asset and—according to the UN—together with basic sanitation, a human right. It is for this reason that a public and universal drinking water supply is considered one of the most basic and important infrastructures for any city or region. Aged, poorly constructed and leaky piping causes significant unnecessary water loss during transport. Efficient water management and monitoring is therefore of great importance for a loss-free and sustainable drinking water supply.

In EU countries, there is a legal basis for safeguarding and monitoring drinking water quality, which must be complied with and implemented by the individual countries and regions. This refers not only to guaranteeing a standard of drinking water treatment, but also to the provision of intact and clean piping systems.

Considering the objective of improving the sustainability of water system, in addition to the goal of reducing water consumption, waste water must also be taken into account as an important element of water and sanitation provision. The central challenge faced by water supply managers is to guarantee a high water quality while at the same time providing an environmentally friendly and efficient water purification or water treatment.


Sensors and Intelligent Networks (Smart Grid)


Remote water supply can assist with water provision in areas with low access to water. In order to use water more efficiently, water loss during transport must be kept to zero. New software for leak detection or process simulations in the area of ​​water system management can be used to optimize water supply. In addition, ever-evolving technologies can reduce the negative environmental impacts of water treatment.

The use of sensors or sensor networks can replace the work of conventional water meters by not only recording data related to water consumption, water pressure and system performance, but also through feeding data directly into an intelligent network (smart grid). This allows long-term measurement and forecasts about water consumption to be made. Further sensors can also detect possible damage to pipelines, so they can be repaired at the earliest possible stage.


Research Project TWIST ++


Within the scope of the research joint project TWIST ++ (Transitionswege WasserInfraSTstruktur-systeme), new concepts, a planning support system and a "serious game" are being developed by a large research consortium under the leadership of the Fraunhofer Institute for System and Innovation Research ISI to simulate possible scenarios.

The aim is to find integrated and future-oriented technical solutions that intelligently combine waste water disposal objectives with drinking water supply objectives and increase the flexibility of the overall system to adapt to future changes.


Water Energy Transition Concept - i.WET


The integrated water-energy-transition concept (i.WET) demonstrates through real-life scenarios how a modern and intelligent water supply and sanitation system can be created step-by-step in urban areas. It takes into account the sanitation cycles of existing systems, can be flexibly implemented in a modular manner and intelligently combines cutting edge water and wastewater technologies.

I.WET aims to address the three major water infrastructure-related challenges faced in Germany today: demographic change, climate change and energy demand. In Lünen, the city and catchment area of ​​90,000 people in western Westphalia, the results of i.WET are to be implemented in a pilot project in the coming years.

I.WET offers individual measures for buildings, channel systems and sewage treatment plants. A key factor here is the household separation of less contaminated from heavily contaminated wastewater (gray / black water). The researchers want to install their own piping from the shower and washbasin separate from the sewage from the toilet, washing machine and dishwasher.

Water not recycled within the household then flows into "Energieallee", a green strip hosting suitable plants. The plants absorb the remaining nutrients creating optimal growth conditions. This results in biomass, fostering a greener city and reducing potential dangers from flooding.


This may be of interest to you:



UNalab develops a reference framework for nature-based solutions. Water management systems will be developed using a city ecology approach.